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Abstract

This paper outlines a new method for solving the agent’s problem in models where

agents trade two assets. This method involves splitting the two-dimensional maximiza-

tion problem into two sequential one-dimensional problems. I show that this approach

is fast, can be used in settings when an endogenous grid method cannot be applied,

and is simple to implement.
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1 Introduction

Heterogeneous-agent models with multiple assets have become common in macroeconomics.

For example, models with illiquid capital and liquid bonds, such as Greg Kaplan, Benjamin

Moll and Giovanni L Violante (2018) or Christian Bayer, Ralph Lütticke, Lien Pham-Dao

and Volker Tjaden (2019), or models with durable consumption goods, such as David Berger

and Joseph Vavra (2015) or Alisdair McKay and Johannes F Wieland (2019).

The solution of such models is complicated by the multi-dimensional maximization problem

that agents face. In this paper, I show that the two-dimensional maximization problem in a

two-asset model can be split into two sequential one-dimensional problems. First, I solve the

problem assuming that the agent doesn’t adjust one of the assets. I then use this to solve

the problem assuming that the agent can adjust that asset.

This method has benefits in terms of speed, generality, and simplicity. In cases where a

two-asset version of the endogenous grid method can be applied, the two-step method is

faster than that alternative. There are also many models where an endogenous grid method

cannot be applied, for example if one asset is subject to kinked adjustment costs. The

two-step method presented here can still be applied in such cases. Finally, this method is

simple to implement, as it is based on value function iteration and one-dimensional maxi-

mization.

2 A Two-Asset Model

Consider a simple two-asset model. Agents receive income z, which follows a Markov process,

and choose their level of consumption and holdings of two assets: a liquid asset and an illiquid

asset. The liquid asset, b, can be adjusted costlessly each period. The illiquid asset, k, is

subject to adjustment costs. In particular, if the agent chooses k1 for the next period, they

pay adjustment cost gpk, k1q. Assume that gpk, kq “ 0. The agents face borrowing constraints

on both assets. Finally, the liquid and illiquid assets pay returns of Rb and Rk, respectively.

The problem satisfies the following Bellman equation:

V pb, k, zq “ max
b1,k1,c

c1´γ ´ 1

1´ γ
` βEz1rV pb1, k1, z1qs (2.1)

subject to
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c` k1 ` b1 “ Rkk `Rbb` z ´ gpk, k
1
q

b1 ě b

k1 ě k

z1 “ Γpzq

2.1 A Two-Step Method

The solution to the above problem is complicated due to its two-dimensional nature. Agents

face not only a consumption-savings decision, but also an asset portfolio decision. The two-

step approach outlined below splits the problem into two simpler one-dimensional problems.

Step one is to solve the problem of an agent that leaves their illiquid asset holdings unchanged.

Define the problem of such an agent as:

V NA
pb, k, zq “ max

b1
NA,cNA

pcNAq
1´γ ´ 1

1´ γ
` βEz1rV pb1NA, k, z

1
qs (2.2)

subject to

cNA ` k ` b
1
NA “ Rkk `Rbb` z

b1NA ě b

z1 “ Γpzq

As this agent faces a simple consumption-savings problem, the optimal value of b1NApb, k, zq

can easily be solved using, for example, golden-section search. Step two is then to solve the

problem of an agent that is adjusting their illiquid asset holdings. First, note that:

V pb, k, zq “ max
k1ěk

Ṽ pb, k, z; k1q (2.3)

where Ṽ pb, k, z; k1q as the intermediate value for an agent that is free to choose their liquid

assets but must adjust their illiquid assets to k1:

Ṽ pb, k, z; k1q “ max
b̃1,c̃

c̃1´γ ´ 1

1´ γ
` βEz1rV pb̃1, k1, z1qs (2.4)

subject to

c̃` k1 ` b̃1 “ Rkk `Rbb` z ´ gpk, k
1
q

3



b̃1 ě b

z1 “ Γpzq

The key to the two-step method is to note that the solution to this intermediate problem is

closely related to that already found in the case of no illiquid asset adjustment:

Ṽ pb, k, z; k1q “ V NA
pb˚, k1, zq (2.5)

subject to

b˚ “ b`
Rk

Rb
pk ´ k1q ´

gpk1, kq

Rb

The value for an agent that begins the period with asset holdings pb, kq and will choose

illiquid asset holdings k1 is equal to that of an agent who begins the period with asset

holdings pb˚, k1q and will not adjust their illiquid asset holdings. The two-step method works

by noting that the costs associated with adjusting illiquid asset holdings from k to k1 can be

accounted for by adjusting liquid asset holdings from b to b˚. The budget constraint for an

agent with current state variables b˚ and k1 who will not adjust the illiquid asset is:

c` k1 ` b1 “ Rkk
1
`Rbb

˚
` z (2.6)

“ Rkk
1
`Rb

ˆ

b`
Rk

Rb
pk ´ k1q ´

gpk1, kq

Rb

˙

` z

“ Rkk `Rbb` z ´ gpk, k
1
q

This is exactly the budget constraint of the agent facing the intermediate problem. Conse-

quently the solution to these problems is identical, implying that:

b̃1pb, k, z; k1q “ b1NApb
˚, k1, zq (2.7)

Therefore, we can use this to solve the full problem as follows:

V pb, k, zq “ max
k1,c

c1´γ ´ 1

1´ γ
` βEz1rV pb1, k1, z1qs (2.8)

subject to

c` k1 ` b1 “ Rkk `Rbb` z ´ gpk, k
1
q

b1 “ b1NApb
˚, k1, zq
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b˚ “ b`
Rk

Rb
pk ´ k1q ´

gpk1, kq

Rb

k1 ě k

z1 “ Γpzq

As the agent in this step faces a one-dimensional problem, the optimal value of k1 can also

be solved using golden-section search.

3 A Comparison with Alternative Methods

To show the potential of this method, in this section I compare it against a number of

alternative approaches for two different specifications of the adjustment cost, gpk, k1q.1 The

first specification uses convex adjustment costs:

gpk, k1q “
α

2

ˆ

k1 ´ k

k

˙2

k (3.1)

In this case, it is possible to solve the problem using the two-asset endogenous grid method

developed by Thomas Hintermaier and Winfried Koeniger (2010).2 Appendix A outlines

their algorithm as applied here. In the second specification I use kinked linear adjustment

costs:

gpk, k1q “ f |k1 ´ k| (3.2)

In this case, it is not possible to use the two-asset endogenous grid method as gpk, k1q is

non-differentiable when k1 “ k. Consequently, I will also compare the two-step method to

two other approaches that do work in this case. The first is a nested golden-section search

method. In an outer loop the agent maximizes over one of the assets, while in an inner loop

they maximize over the other asset, conditional on the choice of the outer-loop asset.3

The final alternative approach is to discretize the problem entirely and restrict an agent’s

1The two-step method can also be used in cases of (possibly random) adjustment costs denoted in terms
of utility. I use this method to solve the model in Sebastian Graves (2020).

2This is an extension of the one-asset endogenous grid method in Christopher D Carroll (2006). Bayer
et al. (2019) is an example of an application of the two-asset endogenous grid method.

3For both this approach and the two-step method I use cubic spline interpolation to evaluate the value
function between grid-points. For the two-step method I use linear interpolation to evaluate the liquid asset
policy function between grid-points.
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Table 1: Parameter Values

Model β γ ρZ σZ Rb Rk b k f α

Convex Costs: gpk, k1q “ α
2

`

k1´k
k

˘2
k 0.9 1 0.8 0.1 1.01 1.02 0 1 N/A 0.05

Linear Costs: gpk, k1q “ f |k1 ´ k| 0.9 1 0.8 0.1 1.01 1.02 0 0 0.0075 N/A

asset choices to the grid-points. When the set of possible future asset holdings is discretized,

it is possible to simply calculate the value of every possible pb1, k1q pair and then choose the

optimum.

Regardless of the adjustment cost specification, I assume that the log of idiosyncratic pro-

ductivity follows an AR(1) process:

log z1 “ ρz log z ` εz (3.3)

where εz „ Np0, σ2
zq. I use the method of George Tauchen (1986) to discretize the produc-

tivity process on a grid with 5 points. The parameter values that I use are shown in Table

1. For both adjustment cost specifications, I solve the problem using each possible solution

method and vary the number of grid points used for the liquid and illiquid asset, Nb and

Nk.
4 Table 2 shows the time required to solve the problem using each approach and each

number of grid points.

The two-step method is around two times as fast as the endogenous grid method in the case

with convex adjustment costs.5 Both methods are significantly faster than nested golden-

section search or discretization. The latter fares particularly poorly as the number of grid

points (and consequently the number of possible asset choices) rises. The relative speeds

are basically the same in the case of linear adjustment costs. The difference in this case

is that for this adjustment cost specification it is not possible to use the endogenous grid

method. Consequently, the two-step method is by far the fastest solution technique for such

a model.

4For all solution methods except the endogenous grid method, I approximate the expected value function

V epb, k, zq “ Ez1rV pb, k, z
1qs. I deem that the value functions have converged when

ř

s |V
e
i psq´V e

i´1psq|
ř

s |V
e
i´1psq|

ă 10´6.

V e
i psq is the expected value function in iteration i at grid point s. I initialize the expected value function

at the value consistent with policies of b1 “ b and k1 “ k. For the endogenous grid method, I initialize the

policy functions at the same starting point and iterate until max
!
ř

s |cipsq´ci´1psq|
ř

s |ci´1psq|
,
ř

s |k
1
ipsq´k1i´1psq|

ř

s |k
1
i´1psq|

)

ă 10´6.
5Both methods take almost exactly the same number of iterations to converge.
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Table 2: Comparison of Solution Methods

Grid Points Two-Step Endogenous
Grid Method

Nested Golden-
Section Search

Discretized

Convex Costs: gpk, k1q “ α
2

`

k1´k
k

˘2
k

Nb “ Nk “ 40 3 6 56 41
Nb “ Nk “ 60 8 15 113 214
Nb “ Nk “ 80 13 35 210 2016

Linear Costs: gpk, k1q “ f |k1 ´ k|

Nb “ Nk “ 40 3 N/A 50 39
Nb “ Nk “ 60 7 N/A 110 200
Nb “ Nk “ 80 13 N/A 202 1950

Notes: Table shows the time in seconds to solve the agents’ problem using each approach. Nb

and Nk denote the number of grid points used for the liquid and illiquid asset, respectively. In
each case the maximum value on the grid for b is 15 and for k is 95, with grid points concentrated
towards the borrowing constraints.

4 Conclusion

This paper outlines a new method for solving the agent’s problem in a two-asset model. This

method involves splitting the two-dimensional maximization problem into two sequential one-

dimensional problems. The key insight is that the problem for an agent who is adjusting

their holdings of one asset to a new level and then considering their holdings of the second

asset can be shown to be equivalent to that of a particular agent who already had the new

level of the first asset but is not going to adjust it.
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Bayer, Christian, Ralph Lütticke, Lien Pham-Dao, and Volker Tjaden. 2019. “Pre-

cautionary savings, illiquid assets, and the aggregate consequences of shocks to household

income risk.” Econometrica, 87(1): 255–290.

Berger, David, and Joseph Vavra. 2015. “Consumption dynamics during recessions.”

Econometrica, 83(1): 101–154.

7



Carroll, Christopher D. 2006. “The method of endogenous gridpoints for solving dynamic

stochastic optimization problems.” Economics letters, 91(3): 312–320.

Graves, Sebastian. 2020. “Does Unemployment Risk Affect Business Cycle Dynamics?”

FRB International Finance Discussion Paper, 1298.

Hintermaier, Thomas, and Winfried Koeniger. 2010. “The method of endogenous

gridpoints with occasionally binding constraints among endogenous variables.” Journal of

Economic Dynamics and Control, 34(10): 2074–2088.

Kaplan, Greg, Benjamin Moll, and Giovanni L Violante. 2018. “Monetary policy

according to HANK.” American Economic Review, 108(3): 697–743.

McKay, Alisdair, and Johannes F Wieland. 2019. “Lumpy durable consumption de-

mand and the limited ammunition of monetary policy.” National Bureau of Economic

Research.

Tauchen, George. 1986. “Finite state markov-chain approximations to univariate and vec-

tor autoregressions.” Economics letters, 20(2): 177–181.

Appendices

A Two-Asset Endogenous Grid Method

The first-order conditions for the full problem are:

cpb, k, zq´γ ě βEz1rcpb1, k1, z1q´γRb
s (A.1)

cpb, k, zq´γp1` g2pk, k
1
qq ě βEz1rcpb1, k1, z1q´γpRk

´ g1pk
1, k2qqs (A.2)

where g1pk, k
1q and g2pk, k

1q are the derivatives of the adjustment cost with respect to the

first and second argument. The first FOC holds with equality if b1pb, k, zq ą b and the

second holds with equality if k1pb, k, zq ą k. The algorithm for the two-asset endogenous

grid method is as follows.

Provide an initial guess of cpb, k, zq and k1pb, k, zq. Iterate on the following until the policy
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functions have converged:

1. For each possible pk, k1, zq use the first-order conditions to find the implied value of b1

satisfying:

Ez1rcpb1, k1, z1q´γRb
s “

Ez1rcpb1, k1, z1q´γpRk ´ g1pk
1, k1pb1, k1, z1qqqs

1` g2pk, k1q
(A.3)

If the left-hand side of the above is greater than the right-hand side for all b1 P rb, b̄s,

set b1pb, k, zq “ b̄. If the opposite is true, set b1pb, k, zq “ b.

2. Use b1pk, k1, zq and the second first-order condition to find cpk, k1, zq as follows:

cpk, k1, zq “

ˆ

βEz1rcpb1pk, k1, zq, k1, z1q´γpRk ´ g1pk
1, k1pb1pk, k1, zq, k1, z1qqqs

1` g2pk, k1q

˙´ 1
γ

(A.4)

3. Use the budget constraint to find the level of b that is consistent with this:

bpk, k1, zq “
cpk, k1, zq ` b1pk, k1, zq ` k1 ` gpk, k1q ´ z ´Rkk

Rb
(A.5)

This gives us the endogenous grid for liquid asset holdings.

4. Interpolate to recover the policy functions b1pb, k, zq and k1pb, k, zq.

5. For cases where b ă bpk, k, zq the lower bound on k1 is binding. In this case, set

k1pb, k, zq “ k. To find b1 in such cases use the standard endogenous grid method:

(a) Use the first FOC to find ckpb
1, k, zq:

ckpb
1, k, zq “

`

βEz1ru1pcpb1, k, z1qRb
s
˘´ 1

γ (A.6)

(b) Use the budget constraint to find the level of b that is consistent with this:

bkpb
1, k, zq “

ckpb
1, k, zq ` b1 ` k` gpk, kq ´ z ´Rkk

Rb
(A.7)

This gives us the endogenous grid for liquid asset holdings for k1 “ k cases.

(c) Interpolate to recover the policy function b1pb, k, zq
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(d) For the cases where b ă bkpb, k, zq, the lower bound on b1 is also binding. Set

b1 “ b.

6. Using the new asset policy functions, recover cpb, k, zq from the budget constraint.

Update guesses of cpb, k, zq and k1pb, k, zq and return to step 1.
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